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Next-generation sequencing (NGS) technologies are revolutionizing genome research, and in particular, their application
to transcriptomics (RNA-seq) is increasingly being used for gene expression profiling as a replacement for microarrays.
However, the properties of RNA-seq data have not been yet fully established, and additional research is needed for
understanding how these data respond to differential expression analysis. In this work, we set out to gain insights into the
characteristics of RNA-seq data analysis by studying an important parameter of this technology: the sequencing depth.
We have analyzed how sequencing depth affects the detection of transcripts and their identification as differentially
expressed, looking at aspects such as transcript biotype, length, expression level, and fold-change. We have evaluated
different algorithms available for the analysis of RNA-seq and proposed a novel approach—NOISeq—that differs from
existing methods in that it is data-adaptive and nonparametric. Our results reveal that most existing methodologies suffer
from a strong dependency on sequencing depth for their differential expression calls and that this results in a considerable
number of false positives that increases as the number of reads grows. In contrast, our proposed method models the noise
distribution from the actual data, can therefore better adapt to the size of the data set, and is more effective in controlling
the rate of false discoveries. This work discusses the true potential of RNA-seq for studying regulation at low expression
ranges, the noise within RNA-seq data, and the issue of replication.

[Supplemental material is available for this article.]

The emergence of next-generation sequencing (NGS) has created

unprecedented possibilities for the characterization of genomes

and has significantly advanced our understanding of its organi-

zation. Today, NGS technologies can be used to tackle the de novo

sequencing of large genomes (Argout et al. 2010; Velasco et al.

2010; Locke et al. 2011), report individual genome differences

within the same species (Durbin et al. 2010), characterize the in-

teraction spectrum of DNA-binding proteins (Park 2009), and

create genome-wide profiles of epigenetic modifications (Li et al.

2010). One of the most ground-breaking applications of short-read

sequencing is the deciphering of the complexity of the tran-

scriptome. In the last few years, the use of RNA-seq technology has

resulted in an incredible amount of new data that have dissected

isoform and allelic expression, extended 39 UTR regions, and re-

vealed novel splice junctions, modes of antisense regulation, and

intragenic expression (Carninci et al. 2005; Nagalakshmi et al.

2008; Graveley et al. 2010; Trapnell et al. 2010). RNA-seq is also

increasingly being used to quantify gene expression, as the num-

ber of mapped reads to a given gene or transcript is an estimation of

the level of expression of that feature (Marioni et al. 2008).

Although at the dawn of RNA-seq applications, it was claimed

that this technology would produce unbiased, ready-to-analyze

gene expression data, the reality has turned out to be very differ-

ent. One of the problems that must be faced when dealing with the

analysis of short reads is that the quantification of expression de-

pends on the length of the biological features under study (genes,

transcripts, or exons), as longer features will generate more reads

than shorter ones (Oshlack and Wakefield 2009). Common nor-

malization methods, including division by transcript length such

as RPKM (reads per kilobase of exon model per million mapped

reads) from Mortazavi et al. (2008), mitigate but do not completely

eliminate this bias (Young et al. 2010). Another drawback is

the very nature of the sequencing technology, which is basically

a sampling procedure from a population of transcripts, implying

that differences in transcript relative distributions between sam-

ples will affect the assessment of differential expression (Bloom

et al. 2009; Robinson and Oshlack 2010). Furthermore, the ability

to detect and quantify rare transcripts is obscured by the wide

dynamic range of mapped reads and the concentration of a large

portion of the sequencing output in a reduced number of highly

expressed transcripts. However, RNA-seq technology boasts a gen-

eral high level of data reproducibility across lanes and flow-cells,

which reduces the need of technical replication within these ex-

periments (Marioni et al. 2008).

Differential expression methods have also evolved with NGS

technologies. Methods traditionally used for microarrays have paved

the way to other approaches that take into account the discrete

nature of the expression quantification and use different probability

distributions to model data (Marioni et al. 2008; Sultan et al. 2008;

Anders and Huber 2010; Hardcastle and Kelly 2010; Robinson et al.

2010; Srivastava and Chen 2010). Most of the methodologies pro-

posed so far rely on parametric assumptions and use Poisson or

negative binomial (NB) distributions to model feature counts, fol-

lowing the rationale of the sampling procedure in RNA sequencing.

However, the subsequent confirmation of distribution assumptions

is important as they might not always hold true (Bullard et al. 2010).

Moreover, usually very few replicates, if any, are available, making the

estimation of model parameters difficult. Additionally, parametric

approaches tend to be problematic for assessing differential expres-

sion in low count features (Bullard et al. 2010).

An underlying factor that relates to several of the mentioned

problems in RNA-seq analysis is the amount of reads generated in
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a given experiment. The more the target is sequenced, the more

transcripts are identified and the higher the value of the expression

level. Although most of the existing analysis methods address

this issue by including a correction factor related to library size

(Mortazavi et al. 2008; Bullard et al. 2010), higher sequencing rates

will presumably result in a more accurate estimation of the ex-

pression level, and concomitantly, inferential methods will then

enjoy increased power to identify differentially expressed fea-

tures. As a consequence, our ability to find transcripts and detect

differential expression is very much determined by the sequencing

depth (SD), and this leads to the question of how many reads

should be generated in an RNA-seq experiment to obtain robust

results. Some recent reports suggest that in a mammalian genome,

about 700 million reads would be required to obtain accurate

quantification of >95% of expressed transcripts (Blencowe et al.

2009), but as yet, there has not been a systematic analysis on how

sequencing coverage affects differential expression calls (Oshlack

et al. 2010). Knowledge on the relationships among SD, feature de-

tection, and differential expression is needed for experimental de-

sign purposes and for understanding the characteristics of the

analysis results. In this study, we set out to gain insight into the effect

that SD has on the statistical analysis of RNA-seq data. We evaluate

how this parameter relates to the identification of expressed genes,

sequencing noise, transcript length, and differential expression. We

propose a novel methodology for the assessment of differentially

expressed features, NOISeq, that empirically models the noise in

count data, is reasonably robust against the choice of SD, and can

work in the absence of replication. Our proposal has been tested on

three human RNA-seq data sets with different SDs and also on sim-

ulated data. We compare NOISeq to published methods for RNA-seq

such as Fisher’s exact test (FET), edgeR (Robinson et al. 2010), baySeq

(Hardcastle and Kelly 2010), and DESeq (Anders and Huber 2010).

Results

Saturation, gene length, and reads distribution

In RNA-seq technology, saturation would be reached when an in-

crement in the number of reads does not result in additional true

expressed transcripts being detected or in more features called as

differentially expressed when two or more conditions are com-

pared. Detection of transcripts can be studied directly on mapped

data, while differential expression calls will depend on the statistical

methodology of choice. We first evaluated the number of detected

genes, defined as genes with more than five mapped reads, and the

new detections rate (NDR), the number of newly detected genes in 1

million additional reads, as a function of the SD for each of the three

data sets used in this study. Note that in this article, the gene is taken

as the expression unit, but results can be extended to other features,

such as transcripts or exons, provided that an appropriate quanti-

fication of their expression was obtained.

Mapped reads accumulative plots (Fig. 1) suggest that for all

three experiments saturation is not entirely reached, since the

number of scored genes keeps on increasing with the number of

reads considered. However, as each data set has a different total

readout, NDRs at the deepest coverage are substantially different.

While Marioni’s data (22 million reads) end at a NDR of 232 genes,

in the MAQC experiment (45 million reads) this value is 70 and in

Griffith’s data set (200 million reads) it drops to 19. It is interesting

to note that for a given number of reads, NDR values are broadly

similar across data sets (for example, in the Griffith data, the NDR at

20 and 45 million reads is 210 and 75, respectively), suggesting that

these saturation figures could be indicative of the saturation dy-

namics of the Illumina technology, at least in human data sets.

We next asked whether this growing detection of genes re-

sulted from the identification of rare transcripts or from the in-

clusion of (un)specific noise in the data. We evaluated saturation

plots for different transcript biotypes, including protein-coding,

processed transcript, pseudogenes, miRNAs, tRNAs, rRNAs, snRNAs,

snoRNAs, and scRNAs (Supplemental Table S1). All the experi-

mental data sets used in this study followed the standard Illumina

protocol for mRNA library preparation (Illumina 2009), which in-

cludes poly-A mRNA isolation, RNA fragmentation, and size selec-

tion from a gel. Therefore, transcripts should be polyadenylated and

larger than the size selection cutoff—typically ;200 bp—to be

captured by the sequencing procedure. Polyadenylation signals are

present in protein-coding genes but have also been identified in

long-range, noncoding transcripts (Carninci et al. 2005) and some

snoRNAs (Grzechnik and Kufel 2008; Lemay et al. 2010). The ex-

pression of pseudogenes is controversial, but reports indicate that

these might be transcribed, giving rise to nonfunctional messengers

in a tissue-specific manner (Zheng et al. 2007). Furthermore, poly-A

stretches might be present in retrotransposed pseudogenes that

originate from genome insertion events of transcribed messengers

Figure 1. Saturation curves display the number of genes detected by more than five uniquely mapped reads as a function of the sequencing depth for
each experimental condition in the three data sets (left y-axis). Vertical bars represent the number of newly detected genes per million additional reads
(NDR, right y-axis) for each experimental condition.
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(Zheng et al. 2007). Poly-A tails are also added to pri-miRNAs, na-

scent miRNA transcripts that undergo processing to reach the mature

miRNA state (Kim et al. 2009). Although pri-miRNAs can be long

molecules, they are of transient nature, and miRNAs are typically not

captured by mRNA-seq library preparation protocols. Alternatively,

miRNAs embedded in introns of coding genes could still be se-

quenced from partially processed transcripts. Other RNAs such as

tRNAs, snRNAs, snoRNAs, and rRNAs may undergo cytoplasmic

polyadenylation as targeting for degradation (Anderson 2005;

Slomovic et al. 2006). Additionally, rRNA depletion usually pre-

cedes mRNA preparation, and rRNA presence is considered as

a contamination in mRNA-seq experiments. In general, these

small RNA species can be considered as not targeted by the

mRNA-seq procedure.

As expected, for all data sets, the protein-coding biotype

represented the large majority of the detected transcripts (60%–

70%). Other species such as pseudogene, processed-transcript, and

lincRNA were also readily found (Fig. 2A; Supplemental Fig. S1),

whereas small RNAs were only marginally detected. The distribu-

tion of biotypes observed among detected features evolved with

increasing SDs, with the relative abundance of protein-coding

transcripts steadily decreasing, whereas noncoding genes gained

a proportional presence (Fig. 2B; Supplemental Fig. S2). Moreover,

transcript-type–specific saturation curves indicated that the cod-

ing transcriptome was more successful in reaching relative satu-

ration than were other relevant transcript species, which pro-

gressed with more steep detection curves, and that in ultra-high-

throughput sequencing data sets, such as the Griffith’s experi-

ment, a non-negligible percentage of off-target RNA species might

also be identified (Fig. 2C; Supplemental Fig. S3). Removing small

RNA intronic reads from mapping data did not alter the observed

saturation dynamics (Supplemental Fig. S4).

Finally, we also observed a sequencing-depth dependency for

the length of detected transcripts. This effect was more pronounced

for lincRNAs, processed transcripts, and pseudogenes than for pro-

tein-coding RNAs (Fig. 2D; Supplemental Fig. S5), which may be

a consequence of the lower count value of noncoding RNAs, which

would create a strong dependence between transcript length and

detection. However, in all four biotypes, the median length of the

identified genes was always larger than the targeted genome median

for that biotype, indicating a general bias of the technology toward

longer transcripts.

Taken together, this analysis suggests that a relatively stable

detection of protein-coding genes is reached at moderate SDs and

that ultra-high-throughput sequencing mainly benefits the de-

tection of noncoding, low-expression RNAs of putative regulatory

function but might also result in the sequencing of off-target tran-

script species, which, in turn, has an influence in the relative pro-

portion of transcript types. Therefore we concluded that for differ-

ential expression analysis, a balanced SD between conditions is

advisable. We also suggest using the ‘‘per-biotype transcript de-

tection’’ and ‘‘length’’ accumulative curves to estimate the satura-

tion and contamination levels of any particular mRNA-seq data set.

Finally, we must highlight that only human data sets were used in

these analyses, and therefore, the presented figures are conditioned

by the magnitude of the human transcriptome.

Differential expression

Once we obtained a comprehensive picture of how NGS library size

affects the identification of expressed genes, we next asked how

the available number of reads influences the capacity of this

technology to detect gene expression changes. In this section,

we introduce the NOISeq algorithm and evaluate the behavior

of this and other differential expression methods in relation to

SD.

NOISeq is a novel nonparametric approach for the identifi-

cation of differentially expressed genes (d.e.g.) from count data

that aims to be robust against the number of available reads. Es-

sentially, NOISeq creates a null or noise distribution of count

changes by contrasting fold-change differences (M ) and absolute

expression differences (D) for all the genes in samples within the

same condition. This reference distribution is then used to assess

whether the (M, D) values computed between two conditions for

a given gene are likely to be part of the noise or represent a true

differential expression (Fig. 3A). In practice, NOISeq creates the

noise distribution by joining (M, D) values from all possible

pairwise comparisons between replicates of either condition (for

more details, see Methods).

Two variants of the method were implemented: NOISeq-real

uses replicates, when available, to compute the noise distribution

and NOISeq-sim, which simulates them in absence of replication.

It should be noted that the NOISeq-sim simulation procedure

assimilates to technical replication and does not reproduce bi-

ological variability, which is necessary for population inferential

analysis. However, current mRNA-seq experiments are still sparse

in replication; thus, the ability of statistical methods to work with

technical replicates, or in their absence altogether, is relevant.

Simulation in NOISeq-sim is basically controlled by two param-

eters: the number of simulated samples or replicates (nss) and the

size of each replicate, given as a percentage of the total number of

reads (pnr). We determined that NOISeq-sim worked best when at

least five replicates were simulated and replicate size was 20% of

the total amount of reads in the corresponding condition. With

these parameters NOISeq-sim resulted in similar differential ex-

pression calls as did NOISeq-real, with a slight higher detection

rate for the simulation version of the algorithm (Supplemental

Material).

Performance assessment of mRNA-seq differential expression methods

We compared NOISeq to a selection of RNA-seq differential ex-

pression methods obtained after evaluation with simulated data

(Supplemental Material), namely edgeR (Robinson et al. 2010),

baySeq (Hardcastle and Kelly 2010), DESeq (Anders and Huber

2010), and FET. These are all parametric approaches (except for

FET), in contrast to NOISeq, for which no assumptions are made

on the distribution of the M and D statistics. All methodologies

were applied to the three benchmarking data sets. Moreover, both

the MAQC and Griffith’s experiments included RT-PCR measure-

ments for a number of genes. In these two cases, we identified

positive (RT-PCR differentially expressed) and negative (RT-PCR

nondifferentially expressed) genes following the same previously

reported procedure (see Methods) (Bullard et al. 2010; Griffith et al.

2010) and used them to obtain performance plots. We also in-

cluded the analysis of gene length corrected data with methods

that permitted this input. Note that FET was applied on counts

normalized by library size.

On the MAQC data set, two performance indicators, precision-

recall curves (PRC) and false-discovery rate (FDR), indicated a better

behavior of NOISeq compared with other methodologies (Fig. 3B).

Specifically, false discoveries were higher for edgeR, DESeq, and

baySeq. FET had a low FDR regardless of the significance threshold

but also showed a poorer precision-recall figure. Interestingly, PRC

and FDR were very similar on data with and without length cor-
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rection. Griffith’s RT-PCR data were more limited but led to the same

conclusions (Supplemental Table S3).

In summary, our performance analysis highlighted differ-

ences between RNA-seq differential expression methods when

using a fixed library size, and pointed to NOISeq as a high per-

forming methodology. We next investigated how these methods

behaved with different numbers of mapped reads.

Differential expression and SD

Comparative statistical approaches were applied to each experi-

mental data set, taking an increasing number of lanes until the

nominal SD of the experiment was reached. In the case of Griffith’s

data, only half of the lanes were used from the sensitive cell line to

equilibrate SD in both samples to around 100 million reads. As

Figure 2. Feature detection and sequencing depth for the MAQC data. (A) Detection percentages per transcript biotype. Gray bar indicates genome
percentage; striped color bar is the percentage detected by the sample with regard to the genome; and solid color bar is the percentage the biotype
represents in the total detected features in the sample. Vertical line separates bars expressed in left and right y-axis scales. (B) Percentage of each transcript
biotype within total detections at increasing sequencing depth (brain sample). (C ) Saturation curves and NDR bars for protein-coding, lincRNA, and
snoRNA. (D) Median transcript length as a function of sequencing depth for protein-coding, pseudogene, processed transcript, and lincRNA biotypes. The
median global length of each biotype is computed considering genes with median transcript length >150 nucleotides.
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different methodologies use different parameters to select signifi-

cant features, it was not always clear which cutoff values would

produce comparable analysis scenarios. In this study, we chose q =

0.8 for NOISeq, a probability of 0.999 for baySeq, and an adjusted

P-value threshold of 0.001 for the remaining methods. Less re-

strictive values for compared methodologies resulted in far too large

a number of selected genes. We performed our study using library

size–normalized count data, as all evaluated methods allowed this

possibility. Next, we introduced feature length normalization into

the analysis for those methodologies that permitted this option.

SD dependence in number and type of differential expression calls

We first investigated the number of differential expression calls as

a function of the SD (Fig. 4; Supplemental Table S4). A very pro-

nounced dependency between gene selection and read number

was observed for edgeR, DESeq, and baySeq. FET did not show this

dependency but did identify a reduced number of significant

genes. NOISeq had an intermediate behavior with a moderate

number of d.e.g. in the Marioni and MAQC data sets, and increased

only slightly with SD. Results for Griffith’s data were slightly dif-

ferent. While FET and NOISeq identified a small number of sig-

nificant genes (between 150 and 200), close to the figure reported

in the original study, other methods resulted in larger selection

sets. Moreover, both FET and NOISeq-real lost significant calls as

more lanes were considered, reflecting the high variability of this

data set. We then looked at differential expression curves by tran-

script biotype and noticed that, for parametric approaches, a sig-

nificant and increasing number of off-target transcripts were se-

lected as more reads were considered (Supplemental Fig. S11),

whereas NOISeq again behaved moderately here. In fact, NOISeq

significant calls were the most enriched in protein-coding genes,

Figure 3. NOISeq method: description and performance. (A) Schematic representation of the NOISeq methodology. M-D distribution in noise (black),
signal (green), and differentially expressed genes (red). Both axis scales have been trimmed to improve visualization. (B) Precision-recall curves and false-
discovery rates for the differential expression methods compared on MAQC data set using RT-PCR results as a gold-standard.
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where other methods included higher proportions of non-

polyadenylated transcripts (Supplemental Fig. S12).

SD influence on length, expression, and fold-change of significant genes

To better understand how SD affects other properties of differential

expression, we plotted the transcript length, fold-change (M ), and

mean expression level of significant genes as a function of the

available number of reads (Fig. 5; Supplemental Fig. S13). The pat-

tern of differences between methods was similar to that observed in

previous analyses. The edgeR, DESeq, and baySeq methods showed

SD dependency, whereas NOISeq and FET did not. FET had large and

constant values for these three parameters.

In the parametric approaches, the mean transcript length of

the statistically significant genes decreased as the number of lanes

grew. This length shortening effect was only very moderately

present in NOISeq, which, at the highest SDs, generally selected

larger genes than did the other methods. This difference is in agree-

ment with the observed higher selection of small, noncoding RNAs

by the parametric approaches. Furthermore, the mean fold-change of

the genes detected by compared methodologies was greatly influ-

enced by the total read number. The larger the sequencing output,

the smaller the count differences between samples declared as sig-

nificant, and this was especially notable in the large Griffith’s data set

(100 million reads), where mean M values for d.e.g. dropped below

1. NOISeq, on the contrary, selected genes with larger count dif-

ferences and had a robust behavior with changing SD. Finally, we

also observed a strong dependency on the level of expression.

Current RNA-seq statistical methods tend to identify genes with

a lower relative abundance as the number of available reads grows.

Again here, NOISeq, and especially NOISeq-real, offered a more

constant and intermediate result, selecting genes with lower ex-

pression at smaller SDs and genes with larger count numbers at

higher depths than did parametric RNA-seq methods.

Most statistical analysis methods for RNA-seq suffer from high FDRs

All previous results indicated that d.e.g. identified by parametric

approaches strongly increase in number as more sequencing is

generated and that this results in calling significant genes with

smaller fold changes. Although this could be explained by an ap-

parent higher accuracy of gene expression estimates in large sam-

pling sizes, the prominent discrepancy with a data-driven meth-

odology such as NOISeq and the results of our initial performance

analysis led us to suspect a general failure of those methods in

controlling FDR as the sequencing output increase. To verify this, we

analyzed the available MAQC RT-PCR data as a function of the SD,

looking both at the false-positive (FPR) and true-positive (TPR) rates.

Figure 4. Differentially expressed genes according to sequencing depth for each data set and method. No gene length correction was applied to
the data.

Figure 5. Relationship between gene length, fold-change M, expression level of differentially expressed genes, and the number of lanes used, for each
method in MAQC data set. No length correction was applied to the data. RpMi is the number of reads in condition i per million reads, namely,

RpMi =
106 3 gene counts in condition i

total counts in condition i

.
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As suspected, current RNA-seq analysis methods progressively in-

corporated false calls as more sequencing data were used, reaching

above 60% of false positives in edgeR (Fig. 6). In contrast, NOISeq

maintained a stable and low FPR throughout the increasing number

of lanes. Only FET had better FPR performance, however, at a sig-

nificant cost of the number of true detections. The TPR obtained

from the other compared methods was slightly higher than that of

NOISeq, which is logically the consequence of the large number of

the d.e.g. called by these methodologies. Furthermore, we verified

that false positives were basically genes with shorter length, de-

creasing expression level, and smaller fold-change differences at

each SD value (Supplemental Fig. S16a). Notably, genes selected in

common by NOISeq and other approaches did contain a functional

signature; that is, they were significantly enriched in many bi-

ological functions, while those only detected by parametric

methods had no specific functional charge (Supplemental Material).

Effect of normalization by feature length on SD biases

Lastly, we evaluated whether normalization of count data by a fea-

ture length correction method, such as RPKM, affected the observed

patterns of SD dependence. We introduced length normalization

into NOISeq-sim, NOISeq-real, FET, and baySeq and repeated our

analysis (edgeR and DESeq packages do not allow for this correc-

tion). Figures were essentially the same as in non–length-normal-

ized data regarding number (Supplemental Fig. S14), mean fold-

change, and mean expression value of d.e.g. (Supplemental Fig.

S15b,c). However, the dependence between library size and tran-

script length was significantly changed, and all methodologies

showed now a constant behavior and a shorter mean length value

than did non-normalized counterparts (Supplemental Fig. S15a).

Finally, false- and true-positive curves for MAQC data (Fig. 7A,B;

Supplemental Fig. S16b) again resembled previous results: baySeq

increasingly detected false positives with increasing SD, and FETand

NOISeq maintained a low level of true positive detection.

Discussion
Estimation of gene expression levels by sequencing is conceptually

simple and has been seen as a very straightforward task. Sequencing

reads the population of RNA molecules in a given sample and ren-

ders a direct quantification of the abundance of each transcript,

mapping ambiguities and sequencing errors issues apart. Although

this is fundamentally true, as shown in studies on correspondence

of RNA-seq data with microarrays and RT-PCR (Marioni et al. 2008;

Bullard et al. 2010; Griffith et al. 2010), we believe that there is still

some work to be done to fully understand the characteristics of

RNA-seq data and their processing by statistical methods. One of the

biases that rapidly became evident was the effect of transcript length

in the quantification and identification of differential expression.

The nature of the short read procedure makes it inevitable that

longer transcripts will be preferentially detected over shorter ones,

and this has been shown to have implications in the biological in-

terpretation of the data (Oshlack and Wakefield 2009; Young et al.

2010). Another important element is the magnitude of the depth of

the sequencing experiment, the subject of this study. Due to the

large dynamic range of gene expression, ultra-high-throughput se-

quencing seems advisable to detect transcripts with low expression

values. However, we have seen that, as more sequencing output is

considered, the diversity and quantity of detected off-target RNA

species, such as several types of small RNAs, also increase (Fig. 2B).

The extent to which each of these biotypes and transcripts are pu-

rification artifacts or have a biological significance warrants a sepa-

rate study, but it does show an important property of RNA-seq data:

the effect that SD has on the distribution of reads among transcripts

and the quantification of expression, essentially a percentage in the

case of this technology. Robinson and Oshlack (2010) have already

highlighted the implications that different transcript distributions

might have in RNA-seq normalization and differential expression.

Our observations suggest that it is advisable to take equal SDs be-

tween samples in order to support accurate statistical analysis.

We have evaluated several RNA-seq differential expression

methods regarding their behavior throughout SDs: edgeR, DESeq,

baySeq, the traditional FET, and a novel method proposed here:

NOISeq. edgeR, DESeq, and baySeq use the NB distribution. The first

two apply an exact test, while baySeq is a Bayesian method. NOISeq

creates an empirical distribution of count changes adapted to the

available data, from which the probability of differential expression

for each feature can be derived. In this nonparametric approach,

differential expression does not rely on individual transcript mea-

surements but in the joint distribution of M-D values for all the

features within the data set. We studied the effect of SD on the

number of d.e.g., their length, fold-change value, and expression

level. The pattern produced by NOISeq and FET was more constant

across the different variables analyzed, whereas the other three

methods showed a pronounced dependence. The parametric ap-

proaches strongly increased the number of significant calls as more

sequencing output was included, resulting in a considerable num-

ber of false positives (Fig. 6). The newly

detected genes were shorter, were of lower

relative expression, and had smaller fold-

change differences than did those obtained

with less data, and they contained many

off-target RNA species (Fig. 5; Supplemen-

tal Fig. S12). False-positive genes identified

in the analysis of the MAQC data had

similar characteristics, suggesting that

large library size data sets analyzed by these

parametric approaches incorporate many

falsely called significant genes at the low

expression range and/or with small fold-

change differences. The constant pattern

of FET was intrinsically due to a low de-

tection power that identified only highly

expressed transcripts. However, NOISeq

showed more robustness against these SD

Figure 6. Relationship between the number of true positives ( TP) and false positives (FP) and se-
quencing depth. TP and FP were obtained applying different statistical methods on the MAQC data
set and comparing the results to RT-PCR positive and negative genes.
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biases while maintaining a high true-positive detection rate. We

believe that given the number of reads sequenced and the specific

characteristics of the data analyzed, this approach creates a more

realistic estimation of the probability that a given count difference

will occur by chance and also results in the stable control of false

positives. The compared parametric approaches do not have this

flexibility and tend to render small fold-changes as significant

when sequencing numbers grow.

One striking difference in the way the two types of methods

work relates to how differential expression calls increased. edgeR,

DESeq, and baySeq added new significant genes to the pool of al-

ready detected features, with each new lane summed into the library

size. In contrast, NOISeq selected new genes but also discarded some

of the features detected at lower sequencing depths, depending on

how the variability introduced by the additional sequence input

reshaped the noise distribution (data not shown). We believe that

this property makes our approach robust to large count values and

helps to control FDRs. This aspect was especially notable when

working with Griffith’s data set. Variability between lanes was sur-

prisingly large if compared to the other two data sets, which resulted

in fewer significant genes declared at the highest SDs (Fig. 7) and an

erratic behavior when considering other parameters analyzed. High

technical reproducibility has been claimed for the RNA-seq tech-

nology (Marioni et al. 2008; Mortazavi et al. 2008), but our obser-

vations suggest that this should be checked for each data set. Un-

fortunately, the cancer study only provided us with a reduced

number of negatives upon which to evaluate SD-related trends;

however, RT-PCR data in this study also indicated a higher FDR for

NB-based methods than for NOISeq (Supplemental Table S3), again

indicating a large artifactual gene selection by those methods in this

data set. Moreover, biological replicates (which remain uncommon

in RNA-seq analysis) are expected to have higher variability rates.

The nature of the NOISeq methodology, in particular NOISeq-real,

makes it a suitable approach for accounting for the variability of

biological replication. On the other hand, it is important to re-

member that inferential approaches such as those implemented in

edgeR, DESeq, and baySeq rely on the analysis of biological repli-

cation to achieve their true competency, and therefore, performance

results of these methods using technical replicates might not be

completely applicable to biological replicates.

With regards to the two variants of NOISeq, overall NOISeq-

sim and NOISeq-real performed similarly throughout the whole

study, although a slightly higher detection rate and SD dependency

was observed with NOISeq-sim. The two

variants were more different at Griffith’s

data. These results indicate that the simu-

lation procedure of NOISeq-sim works well

to replace technical replicates but may

tend to overestimate d.e.g. in data with a

high variability among replicates.

We also analyzed how normalization

by transcript length modified our conclu-

sions. In general, figures were equivalent

when the different statistical methods

were applied to length-normalized data

(Supplemental Fig. S14, S15), except for

the SD influence on the length of signifi-

cant genes, which was not observed. Other

SD biases, such as relative expression, fold-

change differences, and FDR, were main-

tained, indicating that the tendency to-

ward the detection of shorter genes when

using larger libraries is simply the consequence of lower relative

expression rather than length itself, since normalization of expres-

sion value by length eliminated, or reduced, this bias. Other nor-

malization procedures, such as upper quartile (UQUA) (Bullard et al.

2010) or TMM (trimmed mean of M values) (Robinson and Oshlack

2010), have been proposed, and it remains to be studied how SD

influences results in these cases.

This study raises the question of the true potential of RNA-seq

to investigate the regulation of rare transcripts. Our results indicate

that although deep sequencing effectively enhances our view on

the diversity of the transcriptome, the identification of true dif-

ferential expression at a low count range might not be so easy to

achieve. More reads imply the detection of more genes, but also

result in noisier data, which makes the assessment of differential

expression increasingly difficult. This is suggested by the obser-

vation that NOISeq, which models noise on the actual number of

reads, does not indefinitely increase the selection of low count-

number transcripts as SD grows and by the fact that increasing li-

brary sizes confines the false-positive calls to low expressed genes

(Fig. 6). Undoubtedly, improvements in RNA-seq library prepara-

tion protocols, sequencing accuracy, and mapping precision will

help to reduce noise and improve differential expression analysis.

However, the distribution of count differences within one RNA-seq

sample will still be influenced by the nature of short-read tech-

nology and the characteristics of the analyzed transcriptome. For

example, we repeated our analysis considering allocation of multihit

reads, and although slight variations in d.e.g. numbers occurred, the

pattern of SD dependency showed in this study remained (Supple-

mental Fig. S17). We believe that the NOISeq method is an effective

strategy to capture the variability of count data and provide the

statistical framework for differential expression assessment.

In conclusion, this work sheds new light on the properties of

RNA-seq and points to important issues that should be evaluated

when developing new approaches for the statistical analysis of

these data.

Methods

Data sets
Three publicly available human RNA-seq data sets with different
SDs were used in this study. Marioni’s pioneering work (Marioni
et al. 2008) compares gene expression in kidney and liver tissues

Figure 7. Differential expression in the MAQC data set according to sequencing depth for methods
with gene length correction using RT-PCR data as a gold standard. (A) True positives. (B) False
positives.
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and has a SD of around 20 million reads (distributed in five lanes)
for each sample. The MAQC data set (Shi et al. 2006; Bullard et al.
2010) was generated for benchmarking purposes on RNA-seq. It
consists of two samples: Ambion’s human brain reference RNA (brain)
and Stratagene’s human universal reference RNA (UHR). Each sample
comprises seven lanes, providing 42 and 45 million reads, respec-
tively. This project additionally has RT-PCR data for validation of
RNA-seq analysis results. The third data set was published by Griffith
et al. (2010) and contains 96 and 198 million paired-end reads, re-
spectively, of the transcriptome of two human colorectal cancer cell
lines only differing in the fluorouracil (5-FU) resistance phenotype.
Also here RT-PCR data were available for a number of genes.

In all the three experiments, Illumina technology was used.
Raw fastq files were downloaded from the SRA (http://trace.
ncbi.nlm.nih.gov/Traces/sra/sra.cgi) (Leinonen et al. 2011) and
mapped against the Homo sapiens high-coverage assembly Hg19
from Ensembl (Flicek et al. 2011) using Tophat (Trapnell et al.
2009), allowing up to two mismatches and discarding reads map-
ping at multiple locations. Counts for each gene were computed by
means of the HTSeq Python package (Anders 2010) using the an-
notation of the Ensembl genes (version 60) and only exonic reads.
This was also used to obtained biotype for each gene, as well as
a corresponding length value computed as the median length of its
annotated transcripts.

Differential expression method: NOISeq

The NOISeq method computes differential expression between
two conditions given the expression level of the considered fea-
tures. In this study, the gene was used as the expression unit, al-
though the methodology can be equally applied to transcripts or
exons provided the quantification of their expression is supplied.
The gene expression level is the number of reads or in the library
mapping to a gene, namely, the read counts.

Let ci
g j be the number of read counts for each gene i in the jth

sample (or replicate or lane) from the experimental condition or
group g ( g = 1 or 2), where j varies from one to the number of
samples in group g. Then, the library size or SD sg j can be computed
as the sum of counts ci

g j over all the genes for the jth replicate in
experimental condition g. In order to avoid library size bias, the
NOISeq method corrects the counts by a factor closely related to
the SD. The default option is taking the number of counts per
million reads, so the corrected expression values would be
xi

g j = ci
g j 3 106=sg j. Other implemented normalization techniques

are UQUA from Bullard et al. (2010), TMM from Robinson and
Oshlack (2010), or RPKM from Mortazavi et al. (2008) (when the
length of the features is provided). Regardless of the normalization
procedure used, NOISeq permits applying a feature length correc-
tion that consists of dividing the expression level by a factor equal
to any power of the feature length. NOISeq also accepts processed
expression values instead of gene counts to allow other normali-
zation procedures.

Hence, NOISeq takes these corrected values or pseudo-counts
xi

g j to obtain the statistics needed to derive differential expression.
Let xi

g be the expression value that summarizes all the replicates in
the experimental condition g. In the case that there are no replicates
at all, xi

g is the corrected expression value. When technical replicates
are available, xi

g j = +jx
i
g j. If biological replicates are used, xi

g is
computed as the mean or median of the xi

g j for all the replicates.
The differential expression statistics in NOISeq are the log-

ratio (M ) and the absolute value of difference (D). These statistics
collect the information on fold-change and also the absolute
pseudo-counts difference, thereby compensating the unstable be-
havior of M at low expression values. They can be defined for
a certain gene i as Mi = log2

xi
1

xi
2

� �
and Di = xi

1 � xi
2

�� ��.

To avoid the indetermination in calculating M when expression
level is zero, zero counts were replaced by k = 0.5 before normaliza-
tion. The k parameter can also be set by the user or, if normalized
counts are provided, calculated as the middle point between zero and
the minimum expression value for detected genes. In addition, genes
with zero counts in all the replicates and conditions are excluded
from the analysis, considering that they are obviously not expressed.

Once M and D values have been obtained for each gene,
a threshold for these values must be established in order to classify
genes as differentially or nondifferentially expressed. A gene is
considered to be differentially expressed if the corresponding M
and D values are very likely to be higher than noise values. The M
and D probability distribution in noise data is computed by con-
trasting gene counts within the same experimental condition. To
obtain this distribution, each replicates pair are considered, and
values are pooled together. Absolute values of M are used, since the
sign of changes is arbitrary and only the magnitude of the change
is biologically meaningful.

Let M* and D* be the random variables describing noise dis-
tribution. Let Gi be a random variable that takes the value 1 if gene i
is differentially expressed between two experimental conditions,
and takes 0 when it is not. We are interested in determining the
probability of Gi taking a value of 1. A gene i has been considered to
be differentially expressed when the corresponding values for |M|
and D (|mi|and di) are likely to be higher than in noise (|M*|and D*
values). Then, the probability of a gene being differentially
expressed given the expression levels in both conditions can be
written as follows:

P Gi = 1j xi
1; xi

2

� �
= P Gi = 1jMi = mi;Di = di
� �

= P jM�j<jmij;D�di
� �

:

ð1Þ

Thus, the probability of not being differentially expressed be-
tween the two conditions can be easily derived as PðGi = 0jMi = mi;Di=

diÞ = 1�ðP M�j j< mi
�� ��;D�<diÞ. The odds PðGi = 1jMi = mi;Di = diÞ=:

ðPðGi = 0jMi = mi;Di = diÞ may be used to decide whether a gene is
differentially expressed between the two conditions or not. For in-
stance, an odds value of 4:1 is equivalent to PðGi=1jMi = mi;

Di = diÞ = 0:8, and it means that the gene is four times more likely to
be differentially expressed than nondifferentially expressed. This is the
probability threshold we used throughout the article.

As it has been stated above, the NOISeq algorithm compares
replicates within the same condition to estimate noise distribu-
tion. Two versions of NOISeq method have been developed:
NOISeq-real computes noise from replicates when these are avail-
able, and NOISeq-sim simulates technical replicates from the data.

NOISeq-real

The algorithm estimates the probability distribution for M* and D*
in an empirical way, computing M and D values for every pair of
replicates within the same experimental condition and for every
gene. Then, all these values are pooled together to generate the
noise distribution. Two replicates in one of the experimental
conditions is sufficient to run the algorithm. If Jg is the number of
samples in experimental condition g, the number of comparisons
within this condition would be Jg

2

� �
. If Jg

2

� �
is higher than 30, in

order to reduce computation time, 30 pairwise comparisons
are randomly chosen out of these Jg

2

� �
when estimating noise dis-

tribution. It should be noted that biological replicates are necessary
to make any inference about the population.

NOISeq-sim

When there are no replicates for any of the experimental condi-
tions, the algorithm can simulate them. The simulation relies on
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the assumption that read counts follow a multinomial distribution,
where probabilities for each class (gene) in the multinomial distri-
bution are the probability of a read to map to that gene. These
mapping probabilities are approximated using counts in the only
sample of the corresponding experimental condition. Counts equal
to zero are replaced with k = 0.5 to give all genes some chance to
appear. Given the SD of the unique available sample, the SD for the
simulated samples is generated randomly from a uniform distribu-
tion in the interval [( pnr� y)3 sg), ( pnr + y)3 sg]. The parameter pnr
determines the number of reads of each simulated replicate and is
a percentage of the SD sg of the available sample g, and y is a pa-
rameter representing the variability of SD across samples. Both pa-
rameters can be chosen by users. NOISeq-sim also allows users to
choose the number of replicates to be simulated (nss). We recom-
mend nss $ 5, pnr = 0.2 and y = 0.02.

NOISeq has been implemented in the statistical language
R and is available at http://bioinfo.cipf.es/noiseq.

Validation of differential expression calls

RT-PCR data available from MAQC and Griffith’s experiments were
used to evaluate performance of statistical methods. Positive and
negative RT-PCR d.e.g. were obtained directly from the original
works and matched to Ensembl identifications. After discarding
replicates and eliminating unmatched genes, a total of 330 and 82
positive genes and 83 and 12 negative genes for the MAQC and
Griffith’s data sets, respectively, were taken to compute TPRs and
FPRs. Additionally, P and FDR plots were generated both for sim-
ulated and RT-PCR data sets. ‘‘Recall’’ is the TPR and ‘‘precision’’ is
defined as TP/(TP + FP), so it is equal to 1 � FDR. PRC are good
performance estimators when the number of negatives greatly
exceeds the number of positives, as is the case of expression data
sets (Davis and Goadrich 2006).
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